A Macro Preprocessor for a

FORTRAN Dialect

John Gary

Department of Computer Science
University of Colorado
Boulder, Colorado
80302

August 1975

This is a revision of Report #CU-CS-054-74, August 1974.

This design was performed under ARPA Grant AF0S-74-2732.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
AUG 1975 2. REPORT TYPE 00-00-1975 to 00-00-1975
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Macro Preprocessor for a FORTRAN Dialect £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Computer Science,University of REPORT NUMBER
Colorado,Boulder,C0O,80309

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 17
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

0. Introduction. Our objective is to provide a macro preprocessor
for a language similar to FORTRAN. This is a "mesh operator" language
(PDELAN) intended for the construction of finite difference codes for
partial differential equations. It is described in a companion report
[8]. The PDELAN compiler generates a FORTRAN object program. These ideas
have not been 1implemented at the time of this writing.

The macro preprocessor could be used with a modified version of
FORTRAN in which blanks are delimiters and certain "keywords" such as
IF, FORMAT, DO, etc., are also reserved words which cannot be used as
names by the user. The syntax of the macro preprocessor is intended to
be natural to a FORTRAN programmer. Its most frequent application,
such as the propagation of COMMON declarations throughout subroutines,
should be easy to remember and use. It would piace the error messages
from the PDELAN compiler in the original source code. PDELAN contains
structured control statements such as the following [13]:

IF ... THEN ... ELSE ... ENDIF

REPEAT ... UNTIL ... ENDREPEAT
The macro preprocessor permits long names (up to 29 characters) which are
shortened to 6 characters on output (with name conflicts avoided). It
also permits, through conditional macro expansion, the generation of code
which is more machine independent. It is not intended to allow user
defined Tanguage extension, except trivial extensions. It seems to us
to be too difficult to include good error diagnostics in a macro extension.
Also the macro extensions are probably too slow. Thus we place the pre-
cessor for the mesh Tanguage in a compiler which follows the macro prepro-

cessor. This compiler for the PDELAN language is described elsewhere [8].

This is a continuation of work started at NCAR in 1970. A first
version of PDELAN for solving partial differential equations was
developed by Gary and Helgason [1]. A set of graphics commands was
added to PDELAN by Locs and Gary [2]; This code is in 1light use at
NCAR (fewer than 10 people use it); However Helgason wrote an improved
version of the macro preprocessor called FRED which has been further
improved by Dave Kennison [5]; FRED contains macro capability, sub-
-scripts bounds checking, a “TIDYF feature to renumber and indent a

deck, and other features. However, it does not contain difference

operators or graphics commands. Here we propose a macro facility somewhat
different from FRED. It will not have the subscript bounds checking or
the TIDY feature. It will have the capability to modify and generate
tokens, perform conditional macro expansion, and execute macro-time
expressions. It will be based on the PDELAN language in which blanks

are delimiters and the keywbrds are reserved. PDELAN contains many
FORTRAN features such as COMMON, SUBROUTINE, the same type of data
structures (or lack of them), and the same I/0 structure. However, it
does have structured conditional and repetitive statements such as the

PASCAL Tlanguage or the preprocessors RATFOR, FLECS, MORTRAN, IFTRAN
[14].

One of our main objectives is to make the macro syntax appear nat-
ural to an experienced FORTRAN programmer. Thus the macro definitions
are similar to subroutines and the macro calls are similar to a FORTRAN
function call. The macro-time statements and conditional compilation

are similar to FORTRAN although we did use the IF ... THEN ... ELSE

construction. We feel our macro prepkocessor is easier for a;FORTRAN
programmer to Tearn and remember than the macrO'preprocessor for
FORTRAN called MP/1 by Macleod [6] or the preprocessor imbedded in the
LLL FORTRAN [3]. MP/1 is more powerful since it is a pattern matching
macro and it has a good set of macro-time commands. The LLL macros do
not have much macro-time capability. The macro processors designed
for FORTRAN (FLECS, MORTRAN, IFTRAN, RATFOR) that we‘are familiar with

do not have enough macro-time commands or sufficiently flexible macros.

a modified FORTRAN syntax is used in which b1anksware delimiters and

the keywords are reserved; Tokens can be recognized by a lexical scan
ahead of the macro expansion and thus also ahead of the syntactical
analysis. Macro calls are recognized by the appearance of a macro

name with no special delimiting character or pattern matching required.
The syntax of a macro definition is similar to that of a FORTRAN‘
subroutine or function. The macro definitions can be stored as a string
of tokens rather than a character string which should permit a more

- compact internal representation; The token types include integer and
real constants, identifiers; and the operators or delimiters + - * / **

.t () =. The delimiters $ # and ' are also used. The first two are

used in conjunction with the macros, the Tast is used to delimit
character strings. The last three characters have a different form on the
keypunch than the teletype form given\here. Various p@?i@@f&elimited
operators are also used (.LE. .LT. .GT. .NE. .EQ. .AND. .OR. .NOT.
.NULL.). Boolean constants (10B) and Hollerith constants ("ABCD"
4HABCD) are also used. Format specifications must be included as tokens
(for example, 2E10.3,2P,2PE10.3). A nonblank character in column six
denotes a continue card, which is almost the standard FORTRAN convention.
Columns 1 thru 5 can be used only for statement labels.

In order to use a compiler writing system such as that described
by Cohen [15], we might allow only identifiers, integers and character
delimiters as tokens. These tokens can be recognized by a lexical

scanner built into the compiler writing system.

The statements are almost "free-form". They may start anywhere
on the card after column six. Column six is used to mark continuation
cards. Only statement labels may appear in €olumns 2 thru 5. The
statement termination ";" can be used to place more than one statement
on a card. The added statements can be labeled. If the first token
of the statement is an integer constant, then this constant is a

statement label. In order to produce better error diagnostics,

it was decided not to attempt to make the macro preprocessor independent
of the Tangage syntax. It is also an advantage if the macro preprocessor
can recognize statement labels. Eventually we will even partially

parse the input ahead of the macro explansion in order to indent the
input source program according to the nesting level of the source

statements.

2. The macros and macro-time statements. A1l the "macro-time"

statements are preceded by a name which starts with the delimiter "%"

or by the delimiter "%" itself. The character used for this delimiter
is system dependent, it does not exit on the KRONOS timeshare system.
These delimiters can be easily altered. There are two types of macro,

a statement macro and an expression macro. The body of the statement
macro consists of one or more statements. Such a macro name can

be used as a statement in the PDELAN language. The macro name is an
abbreviation for the macro body which replaces it prior to compilation
of the PDELAN program. For example, consider the following abbreviation

of a subprogram header block.

#MACRO COMMONBLKA
COMMON A,E,C,D,U
COMMON /B/ H,DLX,DLY
INTEGER HX,UX
%ENDMACRO

The body of the second type of macro is an expression. Both types
of macro may have arguments. The following is an example of an expression
macro definition and usage.

The definition is
%EXPMACRO FN(F,X) = EXP(F(X))
An example of the usable is

T = FN(SIN,W+1.)

The second statement would expand into

T + EXP(SIN(W+1.))

The definition of this type of macro is a single statement and
therefore does not require the %ENDMACRO statement. More than one
expression macro may be defined in a single statement. For example

%EXPMACRO UT = U(NT1), U2 = U(N2)

Macro calls may be nested, that is a macro definition may contain
a call to a macro. Recursion is allowed, that is a macro may call
itself. However, a macro definition may not contain another macro
definition. A statement number may be placed on a statement macro call,
for example

100 INITIALIZE
In this case a CONTINUE statement is generated ahead of the body of the
macro INITIALIZE.

The scope of the macro definitions. When a macro definition

is encountered the name of the macro is placed in the symbol table
and its body is placed on a "definition stack." To avoid overflow
of this stack it is possible to Timit the scope of a macro definition.

The command %MACROBLOCK indicates the start of a "block." All

macros defined within the block are regarded as local to the block.
When the command %ENDMACROBLOCK is encountered all these Tocal macros
will be removed from the symbol table and their definitions popped from
the definition stack. Macros not within such a block are regarded as

global and cannot be removed from the definition stack. In addition,

macros defined within a subprogram are available only within that
subprogram. The MACROBLOCK and Z%ENDMACROBLOCK commands cannot
occur within a subprogram.

Macro formal parameters are local to the definition and can
be used as names elsewhere in the source deck. A macro definition

must appear ahead of its first usage or call.

3. Macro-time statements. These are declarations, expressions

and the conditional control of macro expansion. These statements are
executed at "macro-time," that is, when the expansion is performed.
In this first version only intecer variables can be declared at macro-

time, and these variables must be global, they cannot be declared within

a macro definition or a macro block. An example of a macro-time
declaration of an integer variable is the following
%INTEGER N,M
There must not be a blank following the %, it is part of the identifier.
Expressions involving the operators + - * / and integer variables
are allowed. For example
% M= (N+1)/2

The % alone denotes a macro-time replacement statement.

Conditional expansion. A Boolean expression can be evaluated

at macro-time to control macro expansion. For example
%IF N .LT. O THEN
PRINT 250, X,Y,Z
KC = KC+1
%ENDIF
If the Boolean is true then these two statements will be included
in the code to be compiled, otherwise they will not. Note that THEN
is a reserved word. The %IF THEN %ELSE %ENDIF compound statement
must not overlap a macro definition, it must be completely within or
completely outside a macro definition.
The Boolean expression can involve relational operations on

macro-time integer expressions. Comparisons(.EQ. or .NE.) between

character strings are allowed. For example

ZMACRO M(X)
%IF X .EQ. A THEN CALL SUB(A): %ENDIF

%ENDMACRO |
If the actual argument of a macro call of this macro M is the token
A, then the code

CALL SUB(A)

will be added to the output. These conditional statements can be

nested. Note that %ELSE and %ENDIF must be used and not ELSE or ENDIF.

4. Generated symbols. Statement labels distinct from any used

in the source code may be generated by use of the symbols #L(3) or #L(N)
where N is a macro-time integer variable. Within each macro call
#L(3) represents the same statement label different from the label
generated by #L(3) on other calls of this macro. The label generated by

#L(N) will depend on the value of N within a given call of the macro, and

will also be different on different calls of the macro. As an example

consider
%MACRO SUM(S,A,N)
S=0.
DO #L(1) K-1,N
#L(1) S=S+A(K)
%ENDMACRO
A generated name, distinct from other names in the program, which
starts with "I" is obtained from #I(1) or #I(N). For names starting
with "E" the symbols #E(1) or #E(N) are included. These can be used

to generate "local" variables within a macro call.

In addition the macro preprocessor will shorten Tong identifiers
to 6 characters. This will be done by truncation provided no conflicts
arise, otherwise the last character or characters will be modified
until a unique name is obtained. This modification is carried out for

each subprogram. Therefore external names should not exceed 6 characters.

10

5. Commands to control expansion. These are identifiers

whose first character is %. They constitute a complete statement in
PDELAN. Not all of these will be implemented initially.

%NOLIST - cease listing source code

%LIST - 1ist source code

LNEWPAGE OR
%LNEWPAGE(ID) - skip source 1isting to new page, Print identifier ID on

top of page.
%LONGNAMES - at end of preprocessor éource Tisting print Tongnames and

their shortened form

“NAMEMAP - 1ist 1ine numbers where each identifier is used
%FINUS - end of source check

“MACROMAP - 1ist 1ine numbers where macros are definied or used.
%MACROBLOCK - indicate start of a block of macro definitions

%»ENDMACROBLOCK - indicates the end of a block of macros. When this
command is encountered the macros in the block will be
popped from the macro definition stack. Therefore
macros within the block are not defined following
this card. This permits the use of "local" macros

and may prevent overflow of the macro stack.

11

6. Error diagnostics. When an error is detected we will print

the error message with the listing of the original source. If the error
is inside a nested set of macro calls, then the error message will be
printed after the innermost macro call. However, the name of each macro
called within the nested set will be printed along with the line number
from which it was called. We will try to print the innermost Tine of code
along with a pointer to the token at which the scanner stopped, and of
course a message to indicate the type of error. The error recovery will

try to resume at the next statement inside the innermost macro. We are

using recursive descent to parse the PDELAN variant of FORTRAN, and
we may have some difficulty achieving good error recovery.

Note that good error messages and recovery probably requires the
compiler which follows the macro expansion to be designed together with
the macro preprocessor. Errors which the compiler finds should
probably be printed jn the original source code which is input to the
macro preprocessor and not in the input to the compiler which is the
output from the macro preprocessor. We regard the output of good error
messages in this context as a difficult problem. Note that our mesh
operator variant of FORTRAN (PDELAN) produces FORTRAN code as output
which must then be input to a FORTRAN compiler. The code passed to
the FORTRAN compiler by the mesh Tangage compiler should never contain
any undetected errors. The user should not be required to inspect the
FORTRAN output any more than a user need look at assembly langage

output from a FORTRAN compiler.

12

7. Desirable additions. We should allow array % variables and %

variables of real or double precision type. For example

#REAL ARRAY A, B(10)

ZINTEGER XM(10)
The usual FORTRAN functions should be available within the % statements.
Also, % variables could be initialized within their declarations. For
example

%ZREAL CPI = 4.*ATAN(1.)

DATA PI/CPI1/
The DATA statement in the output program sets the value of PI to .
Note that a % variable which appears outside a % statement is transformed
to a character string in the output program. Thus, CPI becomes 3.1416...
using the number of digits carried by the machine.

A macro-time repetition command, This is the

%REPEAT ... % UNTIL ... %ENDREPEAT
command. The Boolean expression following %UNTIL is the same type as
that used with the %IF command. Note that we have not included labeled
% statements or a %GOTO. This is probably a mistaken position from
which we will have to retreat.

The & macro formal parameter marker. A formal parameter in a

macro definition can be indicated by an identifier as in a FORTRAN
subroutine. An integer constant or an INTEGER variable prefaced by a

& could also be used. For example &(1) or &(N). This type of notation is
found in many macro processors. For example suppose the macro has

& variable number of arguments and is to generate a subroutine call for

each argument.

13

KINTEGER N
%MACRO PLOTV
% N=1
%REPEAT
CALL PLOT(&(N))
% N=N+1
SUNTIL &(N) .EQ. NULL
%ENDMACRO

Then the macro call
PLOTV(U,V)
would generate the statements

CALL PLOT(U)
CALL PLOT(V)

Note that we have added a macro-time repetition command
REPEAT FUNTIL

We have also added a reserved word to represent the null token,
namely NULL.

Symbol table information. Our macro préprocessor is coupled

to the compiler for PDELAN. This compiler has a symbol table containing
information such as arithmetic type, array dimensions, etc. This infor-
mation should be available within % statements. This can be done by
providing another function call for the % statements (a suggestion of

Tom Wright from NCAR). For example

% N1 = ARITHTYPE (&(1)
% N2 = DIMEN(&{1))
% N3 - DIMEXTENT(U,2)

The macro actual parameter substituted for &1 must be a single token
which is an identifier. If the variable U is declared

REAL U(20,30,10)
and &(1) = U, then N2 = 3 and N3 = 30.

14

A parenthesized Tist could be used as an actual argument.
For example, consider the macro call

MAC(X,(A,B),Y)
In this &(1) would be replaced by X, &(2) by A,B. The parentheses are
dropped. Also &(2).1 is A and &(2).2 is B. A similar construct is
used in the macro preprocessor of Macleoed [6].

A second type of expression macro. This type of macro allows

macro-time conditional statements to be used to select the expression
which defines the macro. A new type of statement is allowed which
permits a concatenation of tokens. This statement is defined by
occurrence of the macro name on the left of the "=" with a string of
tokens separated by blanks on the right. The macro name can also
appear on the right. The macro name represents a string of tokens
which is null when the macro is entered. The contents of this string
can be changed by the concatenation statement as the sequence of
macro-time statements within the expression macro are executed. Only
macro-time statements are allowed in the body of this expression macro.
The contents of the string when the %RETURN is executed define the
macro. For example consider the following definition of an A format
specification. Here NWORD is a global %INTEGER variable. This type
of macro is distinguished from the previous %EXPMACRO by the absence of
the "=" in the Z%EXPMACRO statement.
%EXPMACRO AFORM
%IF NWORD .EQ. 4 THEN
% AFORM = 20A4 %ENDIF
%IF NWORD .EQ. 10 THEN
% AFORM = 8A10 %ENDIF
% AFORM = FORMAT (AFORM)

%RETURN
%ENDEXPMACRO

15

The following macro may not produce the same result as the one
above.
%EXPMACRO AFORM
%INTEGER N
% N = 80/NWORD
% AFORM = FORMAT(N A NWORD)
%RETURN
%ENDEXPMACRO
When a macro-time %INTEGER variable appears in the expression macro
string it is replaced by the character string which represents its
value. If NWORD = 4, then the token string (N A NWORD) consists of
5 tokens (20 A 4). If these tokens are converted back into a character
string before the output is given to a compiler, then this %EXPMACRO
should produce the same result as the first macro. If the tokens are
input directly to the syntactical scan of a compiler, then these two
macros might not yield the same result. They would certainly output
different token strings.
Macro-time string variables might be included which could increase

the power of this second type of expression macro.

A pattern matching macro. It should be possible to insert a

pattern matching macro into the preprocessor ahead of the lexical
analysis which produces the tokens. If no pattern macros are defined,
then the pattern matching could be suppressed. Pattern matching and
token generation with symbol table lookup are said to cost about

the same [11]. The pattern macro could be modeled after those in
MORTRAN2 [14] which is fairly easy to understand and implement and

probably provides sufficient power.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[el

[e]

[10]

[11]

f12]

REFERENCES

J. Gary and R. Helgason, "An Extension of FORTRAN Containing Finite
Difference Operators", Software-Practice and Experience, 2, 1972,
pp. 321-336.

G. Locs and J. Gary, "A FORTRAN Extension for Data Display", to appear
in IEEE Transactions on Computers.

J. Martin, R. Zwakenberg, S. Solbeck, "LTSS Livermore Time-Sharing
System", Computation Department, M-026, Lawrence Livermore Laboratory,
Livermore, California.

S. Mandil, "A General Purpose 'Problem-to-Program' Translater",
Comp. Bull. 16, 1972, pp. 492-497.

D. Kennison, "FRED, A FORTRAN Editor", NCAR Scientific Library,

National Center for Atmospheric Research, Boulder, Colorado, 80302,
1973.

I. Macleod, "MP/1 - A FORTRAN Macroprocessor", Comp. Jour., 1970.

H. Mills, "Topdown Programming in Large Systems", in "Debugging
Techniques in Large Systems", Rustin(ed), Prentice Hall, 1971.

J. Gary, "PDELAN: A Mesh Operator Variant of FORTRAN", Department
of Computer Science, University of Colorado, Boulder, Colorado, 80302.
1974.

P. Brown, "The ML/I Macro Processor", Comm. ACM, Vol. 10, pp. 618~
623, 1967.

W. Waite, "A Language-independent Macro Processor", Comm. ACM.
Vol. 10, pp. 443-440, 1967.

P. Brown, "A Survey of Macro Preprocessors”, Annual Review in
Automatic Programming, pp. 37-88, 1969.

S. Pollack and T. Sterling, "A Guide to PL/I", Holt, New York, 1969.

[13] D. Knuth, "Structured programming with GOTO statement" Computing

[14]

[15]

Surveys, 6, pp. 261-301 (1974)

Workshop on FORTRAN preprocessors for numerical software, Jet
Propulsion Laboratory, Pasadena, Calif., Nov, 1974.

J. Cohen, "Experience with a conversational Parser Generating System",
Software-Practice and Experience, Vol. 5, pp. 169-180 (1975).

